CrystaLatch ${ }^{\text {TM }} 1 \times 4$ Series Fiber Optical Switch

(SM, PM, SM High Power, PM High Power, SM Bidirectional, PM Bidirectional

SM High Power Bidirectional, PM High Power Bidirectional)

The CL Series 1×4 Series fiber optical switch connects optical channels by redirecting an incoming optical signal into a selected output fiber. This is achieved using patented non-mechanical configurations and activated via an electrical control signal. Latching operation preserves the selected optical path after the drive signal has been removed. The CL 1×4 series fiber optic switch feature low insertion loss, high extinction ratio, high channel isolation, and extremely high reliability and repeatability. It is designed to meet the most demanding switching requirements of continuous operation without failure, longevity, operation under shock/vibration environment and large temperature variations, and fast response time.

The switch also has build-in circulator and isolator functions. Electronic driver is available for this series of switches.
The magneto-optical crystals used in the CL switches have no fatigue nor drift effect.

Features

- High Speed
- Non-Mechanical
- High Reliability
- Fail-Safe Latching
- Low Insertion Loss
- Rugged
- Compact
- Cost Effective
- Direct Low Voltage Drive

Applications

- Optical Signal Routing
- Network Protection
- Burst Switching
- Configurable Add/Drop
- Signal Monitoring
- Instrumentation

Specifications

Parameter				Min	Typical	Max	Unit
Operation Wavelength ${ }^{[1]}$				1520	1550	1580	nm
				1295	1310	1325	nm
Insertion Loss ${ }^{[2]}$					1.2	1.7	dB
Crosstalk ${ }^{[2]}$	Bidirectional Series		Single Stage	17	25		dB
			Dual Stage	35	50		dB
	Unidirectional Series		Single Stage	20	25		dB
			Dual Stage	40	50		dB
Return Loss ${ }^{[2]}$				50	55		dB
PDL (SM Series Switch only)					0.15	0.25	dB
Extinction Ratio (PM Series Switch only)				18	25		dB
Polarization Mode Dispersion						0.2	ps
Optical Switching Speed (Rise, Fall)				5		10	$\mu \mathrm{s}$
Repetition Rate					2K		Hz
Durability				10^{15}			cycle
Optic Power Handling		Standard			300	500	mW
		High Pow	r Series			2	W
Operating Temperature				-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature				-40		85	${ }^{\circ} \mathrm{C}$
Fiber Type				SMF-28, Panda PM, or equivalent			
Notes: [1]. Agiltron can achieve same SPEC at L band [2]. Measured without connectors.							

[^0]Rev 11/09/23

CrystaLatch ${ }^{\text {TM }} 1 \times 4$ Series Fiber Optical Switch

(SM, PM, SM High Power, PM High Power, SM Bidirectional, PM Bidirectional

SM High Power Bidirectional, PM High Power Bidirectional)

DATASHEET

Mechanical Dimensions (Unit: mm)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Electrical Driving Information

Each switching point is actuated by applying a voltage pulse. Applying one polarity pulse, one light path will be connected and latched to the position. Applying a reversed polarity pulse, another light path will be connected and latched to the position after pulse removed.

Parameter	Minimum	Typical	Maximum	Unit
Resistance (each group)	15	18	22	Ω
Switch Voltage	2.25	2.5	2.75	V
Pulse Duration	0.2	0.3	0.5	ms

Driving kit with USB and TTL interfaces and Windows ${ }^{\top M}$ GUI is available. We also offer RS232 interface as an option - please contact Agiltron sales.

Bidirectional Series 1×4, or 4×1 Switch Driving Table

Single Stage

Optical Path	Pin Group 1		Pin Group 2	
	Pin 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Common \leftrightarrow Port 1	$+*$	-	+	-
Common \leftrightarrow Port 2	-	+	-	+
Common \leftrightarrow Port 3	+	-	-	+
Common \leftrightarrow Port 4	-	+	+	-

* "+": 2.25~2.75 V pulse, "-": Ground.

Dual Stage

Optical Path	Pin Group 1		Pin Group 2		Pin Group 3		Pin Group 4	
	Pin 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Common \leftrightarrow Port 1	$+^{*}$	-	+	-	-	+	+	-
Common \leftrightarrow Port 2	-	+	-	+	-	+	+	-
Common \leftrightarrow Port 3	+	-	-	+	+	-	-	+
Common \leftrightarrow Port 4	-	+	+	-	+	-	-	+

* "+": 2.25~2.75 V pulse, "-": Ground.

CrystaLatch ${ }^{\text {TM }} 1 \times 4$ Series Fiber Optical Switch

(SM, PM, SM High Power, PM High Power, SM Bidirectional, PM Bidirectional
SM High Power Bidirectional, PM High Power Bidirectional)

DATASHEET

Unidirectional Series 1×4 Switch Driving Table
Single Stage

Optical Path	Pin Group 1		Pin Group 2	
	Pin 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Common \rightarrow Port 1	$+*$	-	+	-
Common \rightarrow Port 2	-	+	-	+
Common \rightarrow Port 3	+	-	-	+
Common \rightarrow Port 4	-	+	+	-

*"+": 2.25~2.75 V pulse, "-": Ground.
Unidirectional Series 4x1 Switch Driving Table

Single Stage

Optical Path	Pin Group 1		Pin Group 2	
	Pin 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Port 1 \rightarrow Common	$-*$	+	-	+
Port 2 \rightarrow Common	+	-	+	-
Port 3 \rightarrow Common	-	+	+	-
Port 4 \rightarrow Common	+	-	-	+

* "+": 2.25~2.75 V pulse, "-": Ground.

Dual Stage

Optical Path	Pin Group 1		Pin Group 2		Pin Group 3		Pin Group 4	
	Pin 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Common \rightarrow Port 1	$+^{*}$	-	+	-	-	+	+	-
Common \rightarrow Port 2	-	+	-	+	-	+	+	-
Common \rightarrow Port 3	+	-	-	+	+	-	-	+
Common \rightarrow Port 4	-	+	+	-	+	-	-	+

* "+": 2.25-2.75 V pulse, "-": Ground.

Dual Stage

Optical Path	Pin Group 1		Pin Group 2		Pin Group 3		Pin Group 4	
	Pin 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Port 1 \rightarrow Common	$-*$	+	-	+	+	-	-	+
Port 2 \rightarrow Common	+	-	+	-	+	-	-	+
Port 3 \rightarrow Common	-	+	+	-	-	+	+	-
Port 4 \rightarrow Common	+	-	-	+	-	+	+	-

* "+": 2.25~2.75 V pulse, "-": Ground.

Functional Diagram

CL 1x4 Series Switch

Driving PCB (RS232 or USB, 200ms response)

https://agiltron.com/product/cl-series-electronic-driver/

CrystaLatch ${ }^{\text {TM }} 1 \times 4$ Series Fiber Optical Switch

(SM, PM, SM High Power, PM High Power, SM Bidirectional, PM Bidirectional

Driving PCB (TTL, $\mu \mathrm{s}$ response)

Inputs	Min	Typ	Max	Pulse Duration
Power	4.8 V	5.0 V	5.5 V	DC
Logic " 1 "	2.8 V	3.3 V	5.0 V	$>200 \mu \mathrm{~s}$
Logic " 0 "	0 V	0 V	0.8 V	$>200 \mu \mathrm{~s}$

TTL Operation Instruction

Pin Definition	Pin	Function
$1-8$	TTL	
18	5 V	
	$19,21-30$	GND

Driving Logic

Optical Path	TTL1	TTL2	TTL3	TTL4	TTL5	TTL6	TTL7	TTL8
$\mathbf{1}$	+	-	+	-	-	+	+	-
$\mathbf{2}$	-	+	-	+	-	+	+	-
$\mathbf{3}$	+	-	-	+	+	-	-	+
$\mathbf{4}$	-	+	+	-	+	-	-	+

Note: + ---- Logic "1"

- ---- Logic "0"

For each + , it requires a square wave, of which pulse wide $\geq 200 \mu \mathrm{~s}$
*Product dimensions may change without notice. This is sometimes required for non-standard specifications

CrystaLatch ${ }^{\text {TM }} 1 \times 4$ Series Fiber Optical Switch

(SM, PM, SM High Power, PM High Power, SM Bidirectional, PM Bidirectional

DATASHEET

Typical Switching Response

Typical Loss Change of 1x2 vs Switching Numbers

CrystaLatch ${ }^{\text {TM }} 1 \times 4$ Series Fiber Optical Switch

(SM, PM, SM High Power, PM High Power, SM Bidirectional, PM Bidirectional
SM High Power Bidirectional, PM High Power Bidirectional)

DATASHEET

Ordering Information

	$\square \square$	\square						
Prefix	Type	Wavelength	Switch	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
CLSW- ${ }^{[1]}$ CLPM- ${ }^{[2]}$ CLHP- ${ }^{[3]}$ CLBD- ${ }^{[4]}$ CLPH- ${ }^{[5]}$ CLHB- ${ }^{[6]}$ CLPB- ${ }^{[7]}$ CPHB- ${ }^{[8]}$	$\begin{aligned} & 1 \times 4=14 \\ & 4 \times 1=41 \\ & 1 \times 3=13 \\ & 3 \times 1=31 \\ & \text { Special }=00 \end{aligned}$	$\begin{aligned} & 1310=3 \\ & 1550=5 \\ & \text { Special }=0 \end{aligned}$	Single Stage = 1 Dual Stage $=2$ Special $=0$	$\begin{aligned} & \text { Standard = } 2 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { SMF-28 = } 1 \\ & \text { PM } 1550=B \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { Bare fiber }=1 \\ & 900 \mu \mathrm{~m} \text { tube }=3 \\ & \text { Special = } 0 \end{aligned}$	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { None }=1 \\ & \text { FC/PC }=2 \\ & \text { FC/APC }=3 \\ & \text { SC/PC }=4 \\ & \text { SC/APC }=5 \\ & \text { ST/PC }=6 \\ & \text { LC/PC }=7 \\ & \text { Duplex LC/PC }=8 \\ & \text { MTP }=9 \\ & \text { LC/UPC }=U \\ & \text { Special }=0 \end{aligned}$

[1]. CLSW: CrystaLatch 1×4 SWITCH.
[2]. CLPM: CrystaLatch 1x4 PM Switch.
[3]. CLHP: CrystaLatch 1×4 High Power Switch.
[4]. CLBD: CrystaLatch 1×4 BIDIRECTIONAL Switch.
[5]. CLPH: CrystaLatch 1×4 PM High Power Switch.
[6]. CLHB: CrystaLatch 1×4 High Power Bidirectional Switch.
[7]. CLPB: CrystaLatch 1x4 PM Bidirectional Switch.
[8]. CPHB: CrystaLatch 1x4 PM High Power Bidirectional Switch.

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters $(<5 \mu \mathrm{~m})$ must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550 nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650 nm . We produce a special version to increase the how handling by expanding the core side at the fiber ends.

[^0]: Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

